martes, 30 de julio de 2013

CONDUCTIVIDAD Y RESISTIVIDAD


La conductividad eléctrica es la medida de la capacidad de un material que deja pasar la corriente eléctrica, su aptitud para dejar circular libremente las cargas eléctricas. La conductividad depende de la estructura atómica y molecular del material, los metales son buenos conductores porque tienen una estructura con muchos electrones con vínculos débiles y esto permite su movimiento. La conductividad también depende de otros factores físicos del propio material y de la temperatura.
La conductividad es la inversa de la resistividad, por tanto , y su unidad es el S/m (siemens por metro) o Ω-1·m-1. Usualmente la magnitud de la conductividad (σ) es la proporcionalidad entre el campo eléctrico E y la densidad de corriente de conducción J :

\bold{J} = \sigma \bold{E}

La resistividad es la resistencia eléctrica específica de cada material para oponerse al paso de una corriente eléctrica. La resistividad es la inversa de la conductividad, por tanto . Se designa por la letra griega Rho minúscula (ρ) y se mide en ohmios metro (Ω•m).

 \rho = R {S \over l}


en donde R es la resistencia en ohms, S la sección transversal en m² y l la longitud en m. Su valor describe el comportamiento de un material frente al paso de corriente eléctrica, por lo que da una idea de lo buen o mal conductor que es. Un valor alto de resistividad indica que el material es mal conductor mientras que uno bajo indicará que es un buen conductor.
Como ejemplo, un material de 1 m de largo por 1 m de ancho por 1 m de altura que tenga 1 Ω de resistencia tendrá una resistividad (resistencia específica, coeficiente de resistividad) de 1 Ω•m . Cálculo experimental de la resistividad de un metal
Generalmente la resistividad de los metales aumenta con la temperatura, mientras que la resistividad de los semiconductores disminuye ante el aumento de la temperatura.

No hay comentarios:

Publicar un comentario